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1 Introduction

In this paper, we consider the problem of classifying an unknown probability distribution into one of a

finite or countable number of classes based on random samples drawn from the unknown distribution. This

problem arises in a number of applications involving classification and statistical inference. For example,

consider the following problems:

1. Given i.i.d. observations xl ,x 2 ,... from some unknown distribution P, we wish to decide whether

the mean of P is in some particular set (e.g., in some interval or whether the mean is rational, etc.).

2. Given i.i.d. observations xl,x 2,..., we wish to decide whether or not the unknown distribution

belongs to a particular parametric class (e.g., to determine if it is Gaussian) or to determine to

which of a countable hierarchy of classes the unknown distribution belongs (e.g., to determine class

membership based on some smoothness parameter of the density function).

3. We wish to decide whether or not observations x, X2,... are coming from a Markov source, and if

so to determine the order of the Markov source.

In these examples, our goal is to decide whether an unknown distribution pu belongs to a set of distri-

butions A or its complement AC, or more generally to decide to which of a countable collection of sets of

distributions A 1, A 2,... the unknown j belongs. After each new observation x, we will make a decision as

to the class membership of the unknown distribution. Our criterion for success is to require that almost

surely only a finite number of mistakes are made. There are two aspects to the "almost sure" criterion.

First, as expected, we require that with probability one (with respect to the observations xl,x 2 ,...) our

decision will be correct from some point on. However, depending on the structure of the Ai classification

may be difficult for certain distributions /i. Hence, given a measure on the set of distributions we allow

failure (i.e., do not require a finite number of mistakes) on a set of distributions of measure zero.

Our work is motivated by the previous work of Cover (1973), Koplowitz (1977), and Kulkarni and

Zeitouni (1991). In fact, the previous works just mentioned deal with the specific case in which the

unknown distribution is to be classified according to its mean based on i.i.d. observations, as in the

example problem 1 above. In this case, a subset of 1R can be identified with the set of distributions A

in the natural way (i.e., all distributions whose mean is in a specified set). Cover (1973) considered the

case of distributions on [0, 1] with A = Q[O,1], the set of rationals in [0, 1], and more generally the case of

countable A. He provided a test which, for any measure with mean in A or with mean in AC\N, will make

(almost surely) only a finite number of mistakes where N is a set of Lebesgue measure 0. For countable

A, Cover also considered the countable hypothesis testing problem of deciding exactly the true mean in
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the case the true mean belongs to A, and provided a decision rule satisfying a similar success criterion.

Koplowitz (1977) showed some properties of sets A which allow for such decision rules and gave some

characterizations of the set N. For example, he showed that if A (the closure of A) is countable then N is

empty, while if A is uncountable then N is uncountable. Kulkarni and Zeitouni (1991) extended the results

of Cover (1973) by allowing the set A to be uncountable, not necessarily of measure 0, but such that it

satisfies a certain structural assumption. Roughly speaking, this structural assumption requires that A be

decomposable into a countable union of increasing sets Bm such that a small dilation of Bm increases the

Lebesgue measure by only a sufficiently small amount. In a different direction, Dembo and Peres (1991)

provide necessary and sufficient conditions for the almost sure discernibility between sets. Their results,

when specialized to the set-up discussed above, show that the inclusion of the possibility of some errors on

the set of irrationals is necessary in order to ensure discernibility.

The decision rules of [4, 10, 11, 5] are basically as follows. At time n, the smallest m is selected

such that the observations are suffiently well-explained by a hypothesis in Bin. If m is not too large, we

decide that the unknown distribution belongs to A; otherwise we decide AC. For the case of countable

hypothesis testing, a similar criterion is used. Thus, the Bm can be thougtht of as a decomposition of A

into hypotheses of increasing complexity and so the decision rules are reminiscent of Occam's razor or the

MDL (Minimum Description Length) principle.

The problem considered in this paper uses a success criterion and decision rules very similar to those

in the previous work of [4, 10, 11], but allows much more general types of classification of the unkown

distribution. Section 2 treats the case of classification in A versus AC for distributions on an arbitrary

compact complete separable metric space (i.e., a compact Polish space) with i.i.d. observations. The case

of classification among a countable number of sets A 1, A 2 ,... from i.i.d. observations is considered in

Section 3. Thus, the results of these two sections cover the example problems 1 and 2 mentioned above.

Furthermore, we also consider relaxations of the basic assumption concerning the i.i.d. structure of the

observations xl,..., xn. Namely, results for observations with Markov dependence are presented in Section

4. In particular, we treat example problem 3 on the determination of the order of a Markov chain.

We now give a precise formulation of the problems considered here. Let xl,...,xn be i.i.d. samples

drawn from some distribution p (as mentioned, Markov dependence will be considered in Section 4). We

assume that xi takes values in some compact Polish space E, which for concreteness should be thought

of as [0, 1 ]d C ERd. Let M 1 (E) denote the space of probability measures on E. We put on M 1(E) the

Prohorov metric, denoted d(-, .), whose topology is equivalent to the weak topology.

We consider here the following problems:
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P-l) Based on the sequence of observations (xl,..., x), decide whether p E A or y E Ac, where A is

some given set satisfying certain structural properties (c.f. A-1 below).

P-2) Based on the sequence of observations (xl,..., xn), decide whether y E Ai where all Ai C Ml(E),

i = 1, 2,... are sets satisfying structural properties (c.f. A-1 below).

Since M 1 (E) is a Polish space, there exist on M 1(E) many finite measures which we may assume to be

normalized to have a total mass 1. Suppose one is given a particular measure, denoted G, on M 1(S). In

particular, we allow G to charge all open sets in M 1(E). G will play the role of the Lebesgue measure in

the following structural condition, which is reminiscent of the assumption in Kulkarni and Zeitouni (1991):

A-1) There exists a sequence of open sets Cm C M 1(E) and closed sets Bm C M 1(E), and a sequence of

positive constants E(m) such that:

1) V/i E A 3mo(/l) < oo s.t. Vm > mo(/l),/ E Bin.

2) d(Bm,C c ) = 2E(m > O.

3) G(nno=i Um==n(Cm ) \A ) ) = 0 where Cm{v) = E M 1 (E) I d(v,Cm) < 2/c(m)} is the

2~/ dilation of Cm.

A-i) is an embellishment of the structural assumption in Kulkarni and Zeitouni (1991), which corre-

sponds to the case where Bm is a monotone sequence and Cm are taken as the 2/--- ) dilation of Bm.

The use of A-i) 1) and A-i) 2) was proposed to us by A. Dembo and Y. Peres, who obtained also various

conditions for full discernibility between hypotheses, c.f. Dembo and Peres (1991). We note that as in

Kulkarni and Zeitouni (1991), the assumption is immediately satisfied for countable sets A by taking as

Bm the union of the first m components of A and noting that, for a finite measure on a metric space,

G(B(x, 6)\{x}) -s-->5o 0 where B(x, 5) denotes the open ball of radius 6 around x. More generally, A-1) is

satisfied for any closed set by taking Bm = A and using for Cm a sequence of open sets which include A

whose measure converges to the outer measure of A. Since Cm is open and E is compact, it follows that

d(A, Cm) > 0, and A-i) is satisfied. By the same considerations, it also follows that A-i) is satisfied for

any countable union of closed sets. Also, note that whenever both A = Ul 1Ai and Ac = Ui°°Di with

Ai, Di closed then, choosing Bm = Ui= 1Ai and Cm = ni=lDi , one sees that A-i) holds (with actually an

empty intersection in A-1) 3) for appropriate E(m)). In this situation, the results of this paper correspond

to the sufficient part of Dembo and Peres (1991).
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2 Classification in A versus Ac

The definition of success of the decision rule will be similar to the one used in Kulkarni and Zeitouni (1991).

Namely, a test which makes at each instant n a decision whether pI E A or I E Ac based on xl,..., xn will

be called successful if:

(S.1) Vp e A, a.s. w, 3 T(w) s.t. V n > T(w), the decision is 'A'.

(S.2) 3 N C M 1 (E) s.t.

(S.2.1) G(N) = 0

(S.2.2) VI E AC\N, a.s. w, 3T(w) s.t. Vn> T(w), the decision is 'A ' .

Note that the outcome is unspecified on N. Note also that the definition is asymmetric in the roles

played by A, AC in the sense that errors in A are not allowed at all.
n

Let /zn = E 6xi. We recall that Pun satisfies a large deviation principle, i.e.
i=l

1
- inf H(01tt) < liminfCOO - log P(/Ln E A) < limsupnO 1 log P(tn E A)

OEAi nn (2.1)
<- inf H(0[ji)

OEAo

where A (A °) denote the closure (interior) of a set A C M 1(E) in the weak topology, respectively, and

H/(0I/) =j d0log d1 if 0 << (2.2)
\' otherwise

Our decision rule is very similar to that in Kulkarni and Zeitouni (1991). Specifically, we parse the

input sequence xl, x2,... to form the subsequences

Xm-----' -(3cl(ml-)+ **l,' '' X,5(m)) (2.3)

where the choice of the /3(m) will be given below. The length of the sequence X m will be denoted by a(m),

so that
m

/3(m) = E Z (i), /3(0) = 0. (2.4)
i=l

We will specify the P(m) by appropriately selecting the lengths a(m) of the subsequences.

At the end of each subsequence Xm, we form the empirical measure alxm based on the data in the

subsequence Xm. Namely,

1 (m)
/Ixm =a(m) (2.5),

() i=3(m-1)+l

5



Then we make a decision of whether p E A or ,/ E A c according to whether /xm E Cm or not. Between

parsings, we do not change the decision.

Recall that from the structural assumption A-1), Cc is 2E-(m) separated from B m . Our idea is to

choose a(m) sufficiently large such that if the true measure pl is in B,, then we will have enough data in

forming the empirical measure ,axm to make the probability of an incorrect decision (deciding A c because

Pxn- E Cc ) less than 1/m 2 . If a(m) can be chosen in this manner, then for any J e A, once m > mo(p)

our probability of error at the end parsing interval m is less than 1/m 2 so that by the Borel-Cantelli lemma

we make only finitely many errors.

To show that a(m) can be chosen to satisfy the necessary properties, we will need a strengthened

version of the upper bound in Sanov's theorem (2.1). To do that, we use the notion of covering number:

Definition Let E > 0 be given. The covering number of M 1(E), denoted N(e, M 1(,)), is defined by

N(E, M1(E)) _ inf {n[3yl,. .. ,yn, E M 1(,) s.t. B C U= 1 B(yi,E)} (2.6)

where B(y, E) denotes a ball of radius e (in the Prohorov metric) around y.

Similarly, for any given E, denote by NE(e) the covering number of Y, i.e.

NE(e) = inf {n3Byl,. .. ,Yn E E s.t. Y C Un=1 B(i, )}. (2.7)

where B(yi, E) are taken in the metric corresponding to E.

We claim now:

Lemma 1

N(E,M 1(Y)) < 2 () = N(e,Ml()) (2.8)

Proof In order to prove the lemma, we will explicitly construct an E-cover of M 1(,) with N(e, M 1(,))

elements.

Let Y,..., YN(e) be the centers of a set of e balls in E which create the cover NE(e) in (2.7). Let

bi = 6b, i.e. the distribution concentrated at Yi, and let

( E N)(E)
\. (c) .'b i 0 1. E .

k

Define Y - {y E M 1() : 3 (il,jl)...(ik,jk) s.t. y = E }. Note that Y is a finite set, for
ce=1

it includes at most N() + 1) members. Also, note that Y is an e-cover of M 1(E), i.e. for any
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AL E M 1 (E) there exists a y E Y such that for any open set C C E, l(C) < y(CE) + E. To see that, choose

as y the following approximation to iL:

Let i, = =a, = ,..., N(E), and choose ja = [L (B(a, E)\ (U- B(yk, E)))J N , where by xJ we

Nl (e)-1

mean the closest approximation to x on the N j-net from below. Finally, let jNr(e) N j
ac=1

Take now y = E / ci. It follows that y is a probability measure based on a finite number of atoms and,
CY=1

furthermore, d(y, p) < E. We need therefore only to estimate the cardinality of the set Y, denoted IYI. Note

that IYl is just the number of vectors (jl,. ,jNr(e)) such that ji = 1 and ii e {0, 2e 1) .
i=l

It follows that

IY] _• (N~e--~ -]-1) N ~( e) 01 ''' f.*. dxl ... dXNr()(
1Y1| < NE +0 1)1 X0~~~~~~ A 0~~~~~ A .(2.9)

= ' N-z(N )

However, by Stirling's formula

log (N (e)!) > N(e) log Nr(E)- N:(E) (2.10)

Substituting (2.10) into (2.9), one has

ZIIi (N'(< ) + )1N() CeN r () ( (2.11)

which implies that

N(E,M1(i)) < (1 (1 + (E))N (
eN
' ()

(e)NE () (1 + ( 2 ()) =

For completeness, we show in the Appendix a complementary lower bound on the covering number

which exhibits a behavior similar to N. Thus, the upper bound N cannot be much improved.

The existence of the bound N permits us to mimic the computation in Kulkarni and Zeitouni (1991)

for the case in hand. Indeed, a crucial step needed is bounding the probability of complements of balls, for

all n, uniformly over all measures, as follows:

Theorem 1

P(/n e B(, 6)c)< IN (4 ,M(E)) e -n()
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Proof The proof follows the standard Chebycheff bound technique, without taking n limits as in the

large deviation framework. Indeed,

P(pj. E B(p,6)c) < N (,M1(E)) sup P(IL E B(y,-))
\4 y. / (y),d( y,A)_36/4 4

Therefore, by the Chebycheff bound, denoting by P. the law of the random variable pn and by Cb(E) the

space of continuous functions on Z, it follows that for any 0 E Cb(E),

P(ln E B(l, 6)C) < N (, M()) sup e< e
y4.EMA (Y),d(y,I)>3_3/4 B(y, " )

< J , .M 1 () * sup exp -n l sup inf (< O,vk > -- logEpn(en<J)>(IV4 M()) y: d(y,l&)>36/4 OECb() vEB(y,) n

= ,M41(Z)) - exp -n inf sup (< 0, > n --- log Epn(en<O,>(~,4 Mi>s)) exp vEB(y,~ ),d(y,tL)>36/4 OECb(r) n

= N (-, Mi1(E)) exp (-n inf H( ))
r4 vEB(y, 6 ),d(y,)>38/4

N (4 ,M/i()) · exp -n inf H(vl]))

- N (, M( e -))· e- n()2 (2.12)

where < , v >= f O(x)v(dx), the first equality in (2.12) follows from the min-max theorem for convex

compact sets (c.f. Theorem 4.2 of Sion (1958)), the second equality follows by Lemma 3.2.13 of Deuschel

and Stroock (1989), and the last inequality from the fact that (Deuschel and Stroock (1989), Exercise

3.2.24) for any 0 E B(i,, 6/2)c ,

2- < d(, 1) < 110- Illvar < 2H1 /2 (011A)

0-

Corollary 1 Let Bm C Ml(E) be a measurable set such that IL E Bin. Let BE denote an open set such

that d(Bm, (B )) > 6. Then

P (n E (B )C) N (4,M 1 ()) e(-() (2.13)

We return now to the proposed classification algorithm. Motivated by Corollary 1, define

a(m)= (> [2logm+log2+Ni (- / ) (log (2.14)
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and let 3(m) be as defined previously by (2.4).

Note that with this choice of a(m), using Corollary 1 with 6 = V /2(m), and the expression for

N(6/4, M(1(E)) from Lemma 2.8, we have that for all p E A and m > mo(jt),

P( a(m) E Cm) < 2 (2.15)

as we wanted.

For convenience we summarize the decision rule again here.

Decision Rule For any input sequence X1 , x 2,..., form the subsequences

X
m

-(XO(ml)+ l,... , X 3(m))-

Let pxm denote the empirical measure of the sequence X m . At the end of each parsing, decide IL E A if

pxm E Cm and decide I, E A' otherwise. Between parsings, don't change the decision.

We now claim:

Theorem 2 The decision rule defined by the parsing /3(m) as above is successful.

Proof The proof is essentially identical to the proof of Theorem 1 in Kulkarni and Zeitouni (1991).

a) If pi E A, then by assumption A-1)1) there exists mo(j) such that JL E Bm for all m > mo(yu). Note

that the event of making an error infinitely often is equivalent to the event of making an error at

the parsing intervals infinitely often. However, by our choice of a(m)

E Prob{error after m-th parsing} < mo(y) + + m2 < °°
m=l m=mo ( )+1

Therefore, using the Borel-Cantelli lemma, we have that our decision rule satisfies part (S.1) of the

definition of a successful decision rule.

b) Let

N = n U Cm)\A (2.16)
n=l m=n

By assumption A-1)3), G(N) = 0. Now, if p E AC\N, we may repeat the arguments of part a) in the

following way: For an mo(p) large enough, p E (Cm /))C for all m > mo(p). Therefore, we have

d(p, Cm) > _2cTm- for all m > mo(p). Then using Corollary 1 with 6 = /2 , the expression for

N(6/4, MI(S) from Lemma 2.8, and the choice of a(m) we have that for m > mo(up)

Prob{error after m-th parsing} = P(pxm E Cm) < m2 (2.17)

Hence, as in part a), the result follows by a smiple application of the Borel-Cantelli lemma.

9



3 Classification Among a Countable Number of Sets

In this section, we refine the decision rule to allow for classification among a countable number of sets.

Specifically, if A 1, A 2 ,... are a countable number of subsets of M 1 (E) we are interested in deciding to

which of the Ai the unknown measure p belongs. The only assumption we make on the Ai is that each Ai

satisfies the structural assumption (A-1). The Ai are not required to be either disjoint or nested, although

these special cases are most commonly of interest in applications. In general, after a finite number of

observations one cannot expect to determine the membership status of / in all of the Ai. However, we will

show that for all /, except in a set of G-measure zero in MA1() there is a decision procedure that a.s. will

eventually determine the membership of / in any finite subset of the Ai. In the special cases of disjoint or

nested Ai, the membership status of /z in any of the countable Ai is completely determined by membership

in some finite subset. Hence, in these cases, except for / in a set of G-measure zero the membership of /

in all the Ai will a.s. be eventually determined.

We modify our previous decision rule as follows. The observations xl, x 2 ,... will still be parsed into

increasingly larger blocks in a manner to be defined below. However, now, at the end of the m-th block,

we will make a decision as to the membership of y in the first m of the Ai. The decisions of whether /t

belongs to Al,..., Am are made separately for each Ai using a procedure similar to that of the previous

section.

Specifically, for each Ai let Bi,m be a sequence of closed sets, Ci,m a sequence of open sets and

Ei(m) -+moo 0 a positive sequence satisfying the requirements of the structural assumption (A-1). From

the same considerations that led to (2.15), for

ai(m)= 2( o ) [21ogm + log 2 + N ( i(m)/8) (1-log Eei 8)] (3.18)

we have, for /u E Ai,

P,.(lai(m) E C, m) < 2 (3.19)

As before, the observation sequence xl, x 2,... will be parsed into non-overlapping blocks

X m = (XZ(m_1)+1, .. .,X(m)) (3.20)

where the /(m) are defined below. At the end of the m-th block, a decision will be made about the

membership of u in Al,..., Am. This decision will be made separately for each i = 1,..., m using the

observation sequence Xm exactly as before. That is, at the end of the parsing sequence Xm, for i = 1,..., m

decide that / E Ai according to whether or not pLXm E Ci,m, and don't change the decision except at the

end of a parsing sequence. We define the parsing sequence /3(m) by /3(0) = 0 and /(m) - /3(m - 1) =
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maxl<i<m ai(m) or equivalently
m

(m) =E mtaxk aci(k), /3(0) = 0 (3.21)
k=l - -

For this decision rule we have the following theorem.

Theorem 3 Let Ai C M1(E) for i = 1,2,... satisfy the structural assumption (A-1). There is a set

N C M 1(E) of G-measure zero such that for every P E M'1(E) \ N and every k < oo the decision rule will

make (a.s.) only a finite number of mistakes in deciding the membership of gu in Al,..., Ak. That is, given

any P E M1(E) \ N, for a.e. w there exists m(w) = m(w, y, k) such that for all m > m(w) the algorithm

makes a correct decision as to whether , E Ai or p E Ac for i = 1,..., k.

Proof Let

Ni= UC,() \ Ai (3.22)
n=l m=n

and let
00oo

N = U Ni (3.23)
i=l

Then from the assumption (A-1) it follows that the G-measure of each Ni is zero, and so the G-measure

of N is also zero.

Now, let ,u E Ml(E) \ N, and let k < oo. For each i = 1,..., k, there exists mi(u) < oo such that if

/, E Ai then p E Bi,m for all m > mi(p/), while if p E Ac then [ E (C,/, ))c for all m > mi(,l) (since

/6 ~ Ni). Recall that at the end of the parsing sequence X m , the algorithm decides IL E Ai iff pIxm E Ci,m,

so that if Iu E Ai then an error is made about membership in Ai iff IXm B Ci,m while if A 4 Ai an error

is made iff pxm E Ci,m. If kt E Ai then using Corollary 1 and the fact that d(Bi,m, CiCm) Ž> I2ei(m), we

have that the probability of making an incorrect decision is less than 1/m 2 for m > mi(ul). On the other

hand, if q E A c then since d(Ci,m, (Cm), )) c) /2ei(mi) we also have probability of error less than

1/m 2 for m > mi(yt) (again using Corollary 1 and the expression for a(m)). Hence, for m > mo(/) =

max(m(,/),..., mk(,u)) the probability of making an error about the membership of j in any of Ai,..., Ak

is less than k/m2 . Then

00Proberror in any A on m-th parsing} + k 
mE Proberror in any Ai on mo2+ paring < 00
m=l m=mo+1

so that the theorem follows by the Borel-Cantelli Lemma.

Note that if one also wants to make a correct decision after some finite time whether or not /, is in any

of the Ai for i = 1, 2,... then the decision procedure can be easily modified to handle this. Specifically,
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it is easy to show that sets satisfying the structural assumption are closed under countable union. Hence,

one could include in the hypothesis testing the set Ao = UiiAi, so that after some finite time a correct

decision would be made about the membership of / E Ao.

Also, it is worthwhile to note that if the Ai have more structure then some improvements can be made.

For example, if the membership status of /.t in Ai for i = 1, 2,... is determined by its membership status in

some finite number of the Ai then a correct decision regarding the membership of y in all of the Ai can be

guaranteed (a.s.) after some finite time (depending on y). This is the case for disjoint or nested Ai, which

may be of particular interest in some applications. For these cases, by letting Ao = U 1 lAi and running

the decision rule on Ao, Al, A 2 ,... as mentioned above, we have the following corollary of Theorem 3.

Corollary 2 Let Ai C Ml(E) for i = 1, 2,... satisfy the structural assumption (A-1) and suppose the Ai

are either disjoint or nested. There is a set N C M1 (E) of G-measure zero such that for every , E Ml(E)\N

the decision rule will make (a.s.) only a finite number of mistakes in deciding the membership of iu in all

of the Ai. That is, given any / E M'l(E) \ N, for a.e. w there exists m(w) = m(w,^L) such that for all

m > m(w) the algorithm makes a correct decision as to whether y E Ai for all i = 1, 2, ....

It is worthwhile to note that the results of this section may be used also in the case that Y is locally

compact but not compact. In that case, one may first intersect the Ai with compact sets Km which

sequentially approximate Y and then use m(n) oo. We do not consider this issue here.

We conclude this section with an example taken from the problem of density estimation. Let Y = [0, 1]

and assume that xl,...,x,- are i.i.d. and drawn from a distribution with law ua0, 0 E O. When some

structure is given on the set F = UoeO O,s there exists a large body of literature which enables one to

obtain estimates of the error after n observations (e.g., see Ibragimov and Has'minskii (1981)). All these

results assume an a-priori structure, e.g. a bound on the L2 norm of the density fo = dj. If such

information is not given a-priori, it may be helpful to design a test to check for this information and thus

to be able to estimate eventually whether the distribution belongs to a nice set and if so to apply the error

estimates alluded to above. The application of such an idea to density estimation was suggested by Cover

(1972).

As a specific example, let

Ai = X M1i(Y): j ( ))2 < i).

Note that the sets Ai are closed w.r.t. the Prohorov metric and therefore they satisfy the structural

assumption A-1). Moreover, they are nested and thus Corollary 2 may be applied to yield a decision rule

which will asymptotically decide correctly on the appropriate class of densities.

A somewhat different application to density estimation arises when the Ai consist of single points (i.e.,

each Ai contains a single probability measure). The special case in which Ai consists of the i-th computable
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density is related to a model considered by Barron (1985) and Barron and Cover (1991). For an estimation

procedure based on the Minimum Description Length (MDL) principle, they showed strong consistency

results when the true density is a computable one. Since, there are a countable number of computable

densities and the structural assumption A-1) is satisfied for any singleton, a strong consistency result for

computable densities follows immediately from our results.

4 Applications to Order Determination of Markov Processes

In this section, we extend the model of the observations to allow for a Markov dependence in the observation.

The problem we wish to consider is the order selection problem: given observations from an (unknown)

Markov chain, one wishes to estimate the order of the chain in order to best fit a Markov model to the

data.

Specifically, let E be a compact Polish space as before, but assume that the observations xl,..., xn are

the outcome of a Markov chain of order j, i.e.

Prob(xk E Alxk-1,xk-2,... ,xl) = r'J(xk E Alxk-1l,k-2, .. ,Xk-j)

where A is a Borel measurable subset of Z and k > j. In order to avoid technicalities, we assume that all

Markov chains involved are ergodic, and therefore there exists a unique stationary measure Pjr E M 1 (I j )

such that for any measurable set A in 2J,

Pj (A) = X2,X2,. derJ(x2j x2jl, ... ,xj) d7rJ(xj+l Xj, .. ,X l)dPrj(xj, ,X1) (4.24)

We assume that j is unknown, and our task is to decide (correctly) on the order j.

This problem has already been considered in the literature. Hannan and Quinn (1979) and later Hannan

(1980) considered the case of autoregressive and ARMA models, and proved, under some assumptions, the

consistency of an estimator based on the Akaike criterion. For a related work, see Shibata (1980). In all

the above, an effort is made also to prove asymptotic optimality of the proposed estimators. In the discrete

alphabet (finite E) set-up, Merhav et al. (1989) proposed an estimator based on relative entropy, related

it to the Lempel-Ziv compression algorithm, and proved its asymptotic optimality in the sense of large

deviations. However, their approach does not guarantee in general a zero probability of error and may

result in biased estimates.

In this section, we depart from the above by, on the one hand, relaxing the requirement for "asymptotic

optimality" and, on the other hand, considering the general setup of Markov chains. We show how a

strongly consistent decision rule may be constructed based on the general paradigm of this paper. Towards

this end, we need to extend the basic estimates of Section 2 to the Markov case, as follows.

13



Let R = Y
Z , define xi to be the coordinate map xi(w) = wi, and let the shift operator be defined by

xi(Tw) = xi+i(w). Define the k-th order empirical measure on M.1(E k) by

Pn(1) = _E z6 (Tiw),X2 (Tiw),---.Xk(Tiw)
i=1

As before, we endow M 1(Ek) with the Prohorov topology, and recall that a large deviations upper bound

holds for the empirical measure nj+l, viz. for any set A C M 1 (E j+l) a large deviations statement of the

form (2.1) holds, with the relative entropy H(vlp) being replaced by

] d9(y, log A dO(yj,. y i +lyj,...y)log if 0(.lyj,...,yl) << pL(IYj,...,Yl)
Hj(ol ) E= Jj0dp(y 3 ly 3,...,yi) (4.25)

oo otherwise

For any measure p(xi,... , Xk) E M,1(k), denote by pi the marginal defined by

/i({Xl, .*., xi} E A) -= ({x 1l,..., xi} E A, {xi+l, * *,Xk} e k-i)

and by pji_-1,...,it the regular conditional probability p(xziIxi-1,.., xi-t). With a slight abuse of notations,

we continue to use pi for the marginal of a measure ,p E M 1 (EZ). Define the measure fi = ii-k 0

Pi-(k-1)li-k,...,1 '''* Pil-l, ...,l E MI(E i) as the measure which, for any measurable set A C E',

fi(A) =J dpi-k(Xl, . . .,Xi-k)dpi-(k-1)li-k-....l (Xi-(k-l) IXi-k, . . . .Xl) ' ' 'dpili_1 ,...,.(xi[Xi-x-,. .,Xl)

(4.26)

Let 7rJ be a given j-th order Markov kernel, P=j its corresponding stationary measure, and denote by

Pr'3 the stationary measure on Q generated by this kernel. Assume that the empirical measures /lj+k

k = 2, 3,... are formed from a Markov sequence generated by this kernel. In order to compute explicitly

the sequence of decision rules as in the i.i.d. case, we need to derive the analog of Theorem 1 given below.

Theorem 4

pr"j [j+k 0 B ((Ij+2)j ® rj 03, < )

N (EMi(jt)) e-n) 2 + + N( Ml(l)) e 22k+)
\4 22'+2

< kN ( 22+2 M(+k) e-n(2 4' )2 (4.27)

Proof We prove the Theorem first for the case k = 2. The general case follows by induction. For any

vE M 1(Ej+2), let

A(v, 6) = { E M (sj+2 ): d(, v; 0 ri ® ri) < 6}

C(v, 6) = {/u e M 1 (EJ+
2

): d(gj+l, vj ( 7rj ) < 6/4}.
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It follows that

Pr'j [Ij+2 ¢ B ((Pgj+2)j 0 7j 0 7, 6)) < Prr (pLj+2 0 A(lij+2, 6), ju2 j 2l , ))

+Pr (pl+2 C(Q+ 2, 6))

=P + P2 (4.28)

By repeating the argument in (2.12),

Pi +1 < sup p /+2 E B(y, ),/+2 E C(4 2,6), y ' A(j+2, 36/14)] (4.29)
N (M1(CM(+2)) syEM (E+ 2) 4

Therefore, by the Chebycheff bound, denoting by Pn the law of the random variable p4J+2, it follows that

for any 0 E Cb(Ej+2 ),

( su JS e<n<,v> e- n< ,'> 1j2 E(,+2 )A(3a+ 2
3 s6/4 ))dPn(v)

< sup exp -n sup inf < , v > -- log Epn(en < ° 'v>
yEM, (:j+2) oECb(j+2) vEB(y,) c(,6) n

yOA(v,36/4)

= exp -n inf sup (< ,v> -- log Ep(e <(4.30)
eEB(y, n'C(6.6) 0 +Cb(2+) n

L y.A(,38/4)

However,

sup (< 0, v> -- log Epn(en<° 'v>) (4.31)
OECb(rj+2) n

= sup (< , v> -1 Ilog Ep (eO(x1 ... Xi+2)+ . .. xn)))
0ECb((j+2) n

= sup < 0, , > -- log Epn (eo(xl Xj+2)++(xnj2...Xn))
OEB(r.3+2) n

where B(E j+2) denotes the space of bounded measurable functions on Ej+2 and the last equality follows

from dominated convergence. We assume now that v is absolutely continuous w.r.t vj+l 0 7r3 and that the

resulting Radon-Nikodym derivative is uniformly bounded from above and below (these assumptions may

be relaxed exactly as in Deuschel and Stroock (1989), pg. 69). In this case, we may take 0 in (4.32) as this

Radon-Nikodym derivative, i.e. (x,.. .,xj+2) = log 19 dv to obtain:dvj+l 07r

OES3(Ej+2 )n < ,v15> -- log E(e( " ' .. " i+)+' +( - . )) > H(VIYy+i 0 7r3 ) (4.32)
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Substituting (4.32) in (4.30) and recalling the inequality

2H11/ 2 (vl) > d(v,p)

one obtains

< exp ,-n inf H(vlvj+l (3 7ri)
N _<ME exp -EB(y,{) n c(,) \

yOA (v,38/4)

< exp (- inyA(v,3 /4) d(v, Vj+l 7rj)2/4vEB(y, ) N c(,,)

yOA(v,3$/4)• exp n z ,6)inf (d(v, uva rj0 7i) - d(vji+ vj 3 ® i0 j)) 2)
< exp (-n (6/16)2)

(4.33)

Similarly,

2 <exp (-n (6/64)2) (4.34)

Substituting (4.33), and (4.34) in (4.28) yields the Theorem for k = 2. The general case is similar and

follows by induction.

[]

We are now ready to return to the order determination problem described in the beginning of this

section. Since the set up here differs slightly from the one described in the previous section, we repeat here

the main definitions.

Let Ai C M 1(2Q), i = 0, 1,..., be the set of stationary measures generated by Markov chains of order i

(with i = 0 denoting the i.i.d. case), i.e. for i = 0, 1, 2,...,

p E Ai = (L)i+k = (A)i 0 7rti0 ... 0 -ri for some Markov kernel 7ri and for all k = 1, 2,....

Note that the sets Ai are closed, so that we may take Bi,m = Ai in assumption A-i).

Natural candidates for the covering sets Ci,m are v/ (m) dilations of the Ai. That is, let 6m =

and define

Ci,m = {V E M1(Ei+m): d(v, (,v) 0 i 0 ..0 ri) < 6, for some Markov kernel r i}
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and let

Ci,m = {V E M1(Q): vi+m E Ci,m}.

It is clear that Ci,m is open, and also that

C u (q \Ai)= 0.
n=l m=n

Therefore, by using Theorem 4 and the procedure described in Theorem 3, the sets Ci,m are candidates for

building a decision rule which, a.s., decides correctly in finite time whether the given observation sequence

was generated by a Markov chain of order i. In order to be able to do so, we need only to check that

the complements of the sets Ci,m, which are closed, have the property that they may be covered by small

enough spheres (say, Em/4 spheres), such that the union of those spheres belongs to the complement of

some Ci,m,. This can be seen by using the following lemma.

Lemma 2 Let v, v' E M 1(Ek). Assume that for some 7ri, i < k - 2,

d(v, (v)i i ...0 7) > m.

Further assume that d(v, v') < 6m/4. Then

d(v', (v')i X0 v 0... ) > Em/2.

Proof Note that d(v, v') < 6m/4 implies that d((v)i, (v')i) < 6m/4 and that d((v)i+l, (v')i+l) < am/4. On

the other hand, since 7ri is a Markov kernel, it also follows that d((v)i ® 7r0 , (v')i 0 7r) < 6m/4 and therefore

also that d((v)i 0 7ri 0 ... 0 7ri , (v')i 0 7ri 0'" 0 7ri) < am/4. Hence,

d(v', (v') i ® r ... 7r) > d(v, (v)i0 ® 0 ... 0 ® ) - d(v, v')

-d((v)i X ri .. . ri, (V')i X ri . X i)

> 6,m/2

We have now completed all the preparatory steps required for the definition of the proposed decision

rule. Indeed, let ei(m) be a sequence of positive numbers, define

(m) = 24m+7( [31ogm+ NE+m (ei(m)/24m+3) (1-1 og i(m)/24m+3 . (4.35)

We have, by Lemma 2 and Theorem 4, that for any Markov measure pu E Ai,

P,([t,(m) E C) 1 (4.36)
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where we have used (4.27). The construction of the decision rule is then identical to the one described

in Theorem 3, i.e. one forms the parsing of the observation sequence into the nonoverlapping blocks Xm

described in equation (3.20) with P(m) chosen as in (3.21). At each step, one forms, based on the block

Xm, the empirical measures of order m, m + 1, ... ,2m. The order estimate at the m-th step is now the

smallest i such that p+(m) E Ci,m. By the results of section 3, this decision rule achieves a.s. only a finite

number of errors, regardless of the true order.

Appendix

For completeness, here we prove a lower bound for the covering number of MI1() with respect to

the Prohorov metric. This lower bound exhibits a behavior similar to the upper bound of (2.8), so that

these bounds cannot be much improved. In the proof below, M(e, Y, 7) denotes the E-capacity (or packing

number) of the space Y with respect to the metric I. That is, M(e, Y, 7) represents the maximum number

of non-overlapping balls of diameter e with respect to the metric V that can be packed in Y. The well

known relationship

N(2E, Y, r) < M(2e, Y, 77) < N(e,Y, 77)

between covering numbers and packing numbers is easy to show and is used in the proof below. Note

that for a Polish space E with metric 77, we use the notations N(e,E,77 ) = NZ(e) and N(e,.Ml(E),d)=

N(E, M1(Y)).

Lemma: Let E be compact Polish space with metric y, and let Ml(E) denote the set of probability

measures on E with the Prohorov metric d. Then

1 N ( 2c)

N(cM1(E)) > 8CVN : t2-c)

Proof: First, we can find N = NE(e) points Xl,...,XN which are pairwise greater than or equal to E

apart. Each measure supported on these N points corresponds to a point in JRN in the natural way. Then,

the set of all probability measures supported on zl,..., XN corresponds to the simplex SN in JN.

Now, let p, q be points on the simplex SN and suppose that del (p, q) > 2e where del = E= 1 IPi - qil.
Then on some subset G C {1,. . ., N of coordinates either ZiEG Pi < i qi q+E or E iEG qi < ZiEGPi + E.

Then, considered as probability measures on E, d(p,q) > e since there is a closed set F C E, namely

F = {xi ji E G}, for which either p(F) > q(F') + c or q(F) > p(FE) + c. Hence,

N(E/2, M'1(), d)> M( M 1(), d) > M(2 , SN, del) N(2, SN, del )

Finally, to get a lower bound on N(2e, SN, dtl), we note that the N - 1 dimensional surface measure

of the simplex SN is vNA/(N - 1)! (simply, differentiate the N-dimensional volume of the interior of an
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x-scaled simplex with respect to x, taking the angles into account). On the other hand, note that the

N - 1 dimensional volume of the intersection of SN with an N dimensional £1 ball of radius 2e is not

larger than the volume of an N- 1 dimensional f 1 ball of radius 2c, which equals (4e)N- 1/(N - 1)!.

Thus, N(2e,SN,dtl) > (1/4e)N-lvN. Thus, N(e/2,M'(E)) > (1/4e)N (e)4qeN(e), or equivalently

N(E,M1(E)) > 8efN(2c)(1/8))N ( 2,) .
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